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Abstract—Achieving robust cross contexts speech emotion recognition (SER) has become a critical next direction of research for wide
adoption of SER technology. The core challenge is in the large variability of affective speech that is highly contextualized. Prior works
have worked on this as a transfer learning problem that mostly focuses on developing domain adaptation strategy. However, many of
the existing speech emotion corpora, even those considered as large scale, are still limited in size resulting in an unsatisfactory transfer
result. On the other hand, directly collecting context-specific corpus often results in an even smaller data size leading to an inevitably
non-robust accuracy. In order to mitigate this issue, we propose the concept of enhancing the affect-related variability when learning
the in-context acoustic latent representation by integrating out-of-context emotion data. Specifically, we utilize adversarial autoencoder
network as our backbone with multiple out-of-context emotion labels derived for each in-context samples that serve as an auxiliary
constraint in learning the latent representation. We extensively evaluate our framework using three in-context databases with three
out-of-context databases. In this work, we demonstrate not only an improved recognition accuracy but also a comprehensive analysis
on the effectiveness of this representation learning strategy.

Index Terms—speech emotion recognition, adversarial network, acoustic representation, cross corpus learning
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1 INTRODUCTION

ROBUST cross-context speech emotion recognition has
been an active research topic in speech emotion recog-

nition (SER) technology. The challenge has been originally
addressed as a technical effort in developing a universal SER.
For example, Bezooijen et al. used three different languages
(Dutch, Taiwanese, and Japanese) to identify Dutch vocal
expressions of emotion [1]. Furthermore, Schuller et al.
attempted to construct a universal emotion recognizer for
multiple languages simultaneously through feature normal-
ization [2]; Deng et al. proposed to use auto-encoder to learn
common representations between source and target speech
samples [3]. However, these methods ignore that the large
variability of affective speech in each database is highly
contextualized, leading to sub-par performance of SER.

It was found with the theoretical implications that emo-
tion perception may be universal, as evident from psychol-
ogy literature [4], [5]. Hence, several advanced SER frame-
works have cast the multi-context robustness issue as a
transfer learning (domain adaption problem), i.e., they have
a model trained on a “relatively” large-labeled source emo-
tion corpus, adapting the model in an unsupervised manner
to the target corpus. Most prior works inherently assume
that learning common (domain-invariant) representation
across corpora would alleviate most of the issues and move
toward a universal SER, i.e., to utilize subspace learning
to find common space between datasets. For example, Liu
et al. proposed domain adaptive subspace learning (DoSL)
to learn a projection matrix that transforms the source and
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target speech signals from the original feature space to a
common subspace [6].

Several of these works have demonstrated improved
recognition performances when transferring from a labeled
speech emotion corpus to another unlabeled corpus. How-
ever, the accuracy is still mostly sub-par than possessing
directly in-context data as the training data. In the real-
world application of SER, one would still attempt to collect a
certain amount of data for specific contexts and scenarios to
train a workable SER system. It is an extremely challenging
issue to have enough labeled in-context data. Furthermore,
the labeled emotional speech data are not enough, and the
variability of context-specific speech data are often not ade-
quate for training, even for a particular context, because the
limited data size does not capture well the true variability
of context-specific speech emotion information. Hence, on
the one hand, transfer information from a labeled speech
corpus to each particular context can be sub-optimal. On
the other hand, direct training on the limited labeled data
(generally the case in the SER domain) often undermines
the true variability of affect-related acoustic manifestation
for each context.

Hence, we propose to enrich—integration of affect-
related information with enhanced speech variability—the
in-context (often small scale dataset) speech representation
by integrative learning using out-of-context (larger in-scale
than in-context data) dataset simultaneously. Direct learning
of an enriched acoustic latent embedding by integrating out-
of-context data would possess more representational power
and require less labeled in-context data instead of the con-
ventional approach in treating the development of a robust
SER system as a technical effort of transfer learning. This
particular scenario is also quite common in real-world ap-
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plications, where it is possible to collect and label a limited
amount of in-context data; however, it is difficult to extend
it to large-scale collection. This concept was first proposed
by [7], [8]; We developed multi-view integration algorithms
for SER, specifically, for each of the samples in the target
in-context dataset. We assigned each sample with multi-
perspective emotion labels derived from the out-of-context
dataset and fused it through a kernel fusion method.

This idea was technically advanced further using adver-
sarial learning. The adversarial network has been proposed
to be a powerful generative model learning technique [9],
[10]. We previously extended the concept of integrating out-
of-context data for in-context data in deriving an enriched
acoustic latent code vector through an adversarial learning
mechanism to improve the in-context emotion recognition
[11]. The learning was divided into two steps. First, we
introduced the multi-view emotion perspective by gathering
the emotion labels from the out-of-context dataset for each
in-context sample by computing cosine distance with emo-
tion pooling. Second, the network integrated these multi-
perspective by training the network with an adversarial
mechanism to learn the enriched acoustic latent represen-
tation.

This work builds upon our previous research by tech-
nically extending it and validating its robustness further.
Specifically, this work contributes beyond [11] with the
following three major contributions:

1) Introducing the use of pooling out-of-context and in-
context datasets for adversarial training that learns rep-
resentations to be used in deriving multi-perspective
emotion labels.

2) Comprehensive validation of our proposed enriched
acoustic latent vector using three in-context databases
with two different out-of-context databases in 3-class
recognition task and one in-context database in binary
classification task.

3) Extensive analysis for our framework: 1. Comparison
of different manners in deriving multiple emotion per-
spectives. 2. Examination on visualization of the la-
tent representations. 3. Investigation on the emotion
recognition accuracy obtained as a function of different
amount of training samples with different state-of-the-
art method.

We evaluated our framework on three smaller in-scale
in-context databases—the USC CreativeIT database [12], the
VAM database [13], and the RECOLA database [14]—by
leveraging three larger out-of-context databases—the USC
IEMOCAP [15], the NNIME [16] and the MSP-Improv
database [17]. Our experiments show that the proposed
adversarially enriched latent representation show improved
emotion recognition accuracy with a lower-dimensional rep-
resentation in all three databases. Our experiments demon-
strate the importance of integrating multiple emotion per-
spectives into network learning. Importantly, our analysis
shows that our framework retains its robustness even when
trained with much reduced in-context data, i.e., a result that
is critically important in developing emotion recognition
applications in a harsh context with limited data availability.

2 RELATED WORK

2.1 Cross Corpus Speech Emotion Recognition
Cross corpus SER has been studied in various research
works. Conventionally, it is considered a domain adaptation
problem, transferring information between datasets under
similar recording conditions or from acted in-lab speech to
spontaneous in-the-wild speech [18].

Most of cross corpus SER learn common representation
between corpora in various ways, e.g., to center around
utilizing importance weighting. For example, Hassan et al.
originally proposed an importance-weighted support vec-
tor machine (IW-SVM) [19], which has been extended to
three adaptive algorithms—kernel mean matching (KMM)
[20], unconstrained least-squares importance fitting (uLSIF)
[21], and Kullback-Leibler importance estimation procedure
(KLIEP) [22]—to explicitly compensate for acoustic and
speaker differences between training and testing datasets.
Another common approach is to use the maximum mean
discrepancy (MMD) as the metric to minimize the distri-
bution mismatch problem between different corpora, e.g.,
Song et al. applied it during the optimization procedure of
non-negative matrix factorization [23].

Learning common representation between corpora
can also be done through deep learning following the
widespread use of deep learning techniques in the SER.
Gideon et al. used a progressive neural network to transfer
knowledge for three tasks: emotion, speaker, and gender
detection [24]. Latif et al. proposed a deep belief network to
learn more effective and discriminative long-range features
from source and target domain [25], [26].

2.2 Adversarial Transfer Learning for SER
Adversarial training has been proposed to be a powerful
generative model learning technique related to SER trans-
fer learning [9], [10]. Stefan et al. used it for augmenting
emotion data owing to its intuitive applications as a data
augmenter [27]. Furthermore, Xinyue Zhu et al. used cycle-
consistent adversarial networks (CycleGAN) to augment
data from the original database to train an improved emo-
tion recognizer [28]. Eskimez et al. proposed a CNN-based
generative adversarial network (GAN) generating synthetic
data to solve the eyes-off information [29]; Chatziagapi et
al. generated an in-class spectrogram using GAN to solve
the data imbalance for SER [30]. Latif et al. utilized a data
augmentation mixed up to augment GANs in representation
learning as well as synthetic feature vector generation that
learns better representation and generates synthetic feature
vectors effectively to solve the lack of availability of larger
datasets [31].

Additionally, the characteristics of the adversarial train-
ing eliminate the gap of two different databases relatively
easily. It leads an alternative way as domain adaptation to
the cross-corpus SER. Abdelwahab et al. used a gradient
reversal layer in a multi-corpus setting with three databases
to predict emotion attributes of arousal, valence, and dom-
inance [32]. Saurabh et al. investigated the application of
GANs to generate synthetic feature vectors for speech emo-
tion recognition [33]. Moreover, Gideon et al. proposed the
adversarial discriminative domain generalization (ADDOG)
that makes representations learned from each dataset closer,
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Fig. 1: Emotion-enriched adversarially acoustic latent representations for in-context emotion data learned by leveraging
out-of-context emotion corpora and trained with a neural network as a classifier.

improving the emotion recognition performance in cross-
corpus. Chao et al. integrated the maximum mean discrep-
ancy (MMD) as the metric loss to enforce the representation
consistency between target and source data to achieve unsu-
pervised transfer adversarially [34], [35]. Zheng et al. used
multi-scale discrepancy in adversarial network with three
different time scale-kind speech features to conduct domain
adaptation for cross-corpus SER [36].

Adversarial autoencoders (AAE) of the adversarial tech-
niques have been introduced into the field of SER, unlike
the studies mentioned above [9]. It conserves the advantage
of autoencoder (AE),the ability of powerful learning repre-
sentation of which ties the feature space between target and
source. Deng et al. proposed a sparse auto-encoder-based
feature for SER; they performed transfer learning by build-
ing an auto-encoder to learn from source and target and then
use SVM to train a classifier [3], [37]. Moreover, Deng et al.
utilized a semi-supervised autoencoder improving the emo-
tion performance with another unlabeled emotion corpus
[38]. Fu et al. proposed an adversarial autoencoder-based
classifier (AAEC), augmenting the data and extended the
boundary of the current data distribution [39]. Additionally,
it has the advantage of adversarial learning, turning into
a generative model to learn more descriptive features than
other AE techniques. Sahu et al. encoded high dimensional
features with AAE; these latent code vectors contained class
discriminability for SER citesahu2018adversarial. Moreover,
AAE is also suitable for multi-task learning. Latif et al.
showed that the power of AAE is more than merely sin-
gle emotion recognition; however, it improves the classi-
fication performance in a semi-supervised way. They pro-
posed multi-task semi-supervised adversarial autoencoding
to transfer knowledge within three different tasks—gender,
speaker, and emotion—using AAE to constrain the feature
[40]. Additionally, Fu et al. showed the ability of AAE with
conversational interlocutors involved to predict gender and
emotion [41]. Recently, Gao et al. proposed a feature fusion

network of multi-head attention Bi-LSTM SER, combining
the representation from pre-trained AAE [42].

Inspired by these previous works, we propose an adver-
sarially in-context-enriched learning enhanced latent repre-
sentation structure with AAE to enrich the in-context (often
small-scale dataset) representation by integrative informa-
tion from the out-of-context dataset. It can transfer out-of-
context data that solely has a different label setting into in-
context data by directly learning an enriched acoustic latent
embedding, requiring less labeled in-context data.

3 EMOTION DATABASES

We categorize the databases into two different types: in-
context and out-of-context databases. The former is our main
emotion recognition evaluation corpus, which contains lim-
ited data in scale. The latter is an emotion corpus that is
larger in scale and can be used to aid in the learning of
the enriched acoustic latent representation for the in-context
databases. We use a total of three in-context databases as our
main evaluation corpora and three out-of-context databases.
These databases are introduced briefly in the following
sections.

3.1 In-Context Databases
3.1.1 The USC CreativeIT database (CIT)
The USC CreativeIT database (CIT) is a publicly available
emotion corpus that includes dyadic improvisations based
on an established theatrical acting technique, termed the
Active Analysis, to help elicit natural affective interactions
[12]. There were total of 16 actors (eight males, eight fe-
males) divided into eight pairs to act out improvisations,
resulting in 50 total sessions with each lasting 3– 5 min.
The audio data was recorded from wireless close-up mi-
crophones synchronized with a multi-channel mixer. Each
interaction was rated by three raters using a continuous-in-
time annotation scheme on attributes of valence, activation,
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and dominance (the scale ranged between 1 and -1). Our
target label was the average of the rating. There were a total
of 90 audio recordings, each of them had been previously
segmented manually into utterances. There were a total of
2162 utterances in the database. This paper only focuses on
the activation and valence attributes; it divided the average
values of rated annotations of an utterance into three classes
(class 1: [-1:-0.33], class 2: (-0.33:0.33], and class 3: (0.33:1]).

3.1.2 The VERA AM MITTAG (VAM) Corpus
The VERA AM MITTAG (VAM) corpus included recordings
of a German talk show with spontaneous and emotionally
rich speech [13]. There were 12 broadcasts; each included
2–5 persons involved in dialogs. The database contained
audio data and facial expressions for a total of 47 speakers.
Furthermore, the speakers were between 16 and 69 years.
Specifically, 70% were 35 or younger at the time of recording.
Each segmented sentence was rated with attributes of acti-
vation, valence, and dominance. We also divided the ratings
into three classes (class 1: [-1:-0.33], class 2: (-0.33:0.33], and
class 3: (0.33:1]). In summary, a total of 947 utterances were
used as our target data for the VAM corpus.

3.1.3 The RECOLA Multimodal Corpus
The RECOLA multimodal corpus included 9.5 hours of
continuous and synchronous multimodal recordings with
audio, video, electrocardiogram (ECG), and electrodermal
activity (EDA) [14]. It was a corpus of spontaneous col-
laborative and affective interactions. There were 46 partic-
ipants (27 females, 19 males) recruited from the University
of Fribourg formed in pairs to perform 23 dyadic teams
work. All participants spoke French; however, they had
different mother tongues: 33 were native French, 8 Italian,
4 German, and 1 Portuguese. Each interaction was rated
by 6 French-speaking raters with ANNEMO web-based
annotation toolkit. We used data of 34 participants data
because some of the participants did not agree to share
their data. The database had approximately seven hours of
data. We averaged all the annotations within each utterance
and divided the ratings into high versus low (class 1: [-1:0]
and class 2: (0:1]) due to difficulty in dividing them into
three classes. In summary, a total of 932 utterances, each
with a binary label indicating high versus low for activation
and valence, were used as our target data for the RECOLA
corpus.

3.2 Out-of-Context Databases
Out-of-context databases are the external information we
provide for in-context databases. The proposed method
required original emotion annotation from Out-of-context
databases.

3.2.1 The NNIME Database
The NNIME is a public multimodal Mandarin Chinese cor-
pus that uses a similar setup as the USC CreativeIT database
[16]. The NNIME database contained recordings of 44 sub-
jects engaged in spontaneous affective interactions, which
were approximately three minutes long. All the scenarios
were designed by the theater professor to ensure a rich,
spontaneous, and natural manifestation of affect. Like the

CIT, lapel microphones were hanged on each actor for the
audio recordings in each session. There were a total of 6509
utterances segmented in the database. Four naive annotators
rated the continuous-in-time activation and valence dimen-
sions (scale ranged between -1 and 1) of each recording.

3.2.2 The USC IEMOCAP Database
The USC IEMOCAP database is a publicly available
database with audio and video data. It included five dyadic
face-to-face interactions from 10 actors (five males and five
females) in pairs [15]. Actors interacted with their partners
to engage in both scripted and spontaneous dialogues,
which were collected using both motion capture and audio-
video data synchronously. The interaction dynamics were
designed by professional directors to aid the actors in elic-
iting natural and affective interactions. There were a total
of 6905 utterances corresponding to approximately 12 hours
of data. Each utterance was annotated with both categorical
emotion labels (such as angry, happy, sad, and neural) and
dimensional representations (such as valence, activation,
and dominance) on a scale of 1 to 5.

3.2.3 the MSP-Improv Database(MSP)
The MSP-Improv database (MSP) is a new audio-visual
emotion corpus [17].There were over 9 hours of recordings
of 6 dyadic scenarios. All of the sessions were improvi-
sations. There was a target sentence designed for every
scenario. Specifically, an actor lets his/her partner speak the
targeted sentences within various contextualized emotional
settings, such as happy, angry, sad, and neutral. This ap-
proach allows the actor to express emotions as guided by
the scenarios and also avoids prototypical reactions. There
was a total of 8438 manually segmented utterances. Each
utterance was annotated by at least five raters with both
categorical emotion labels (such as angry, happy, sad, and
neural) and dimensional representations (such as valence,
activation, and dominance) on the scale of 1 to 5. The
annotations were gathered using a crowd-sourced labeling
scheme. The final label assigned to each speech turn was
the average value of the scores provided by the collector of
MSP-IMPROV.

4 RESEARCH METHODOLOGY

We provide details of each component of the proposed
framework of integrating an out-of-context database to learn
an enhanced acoustic latent representation for improving
emotion recognition for the in-context database.

4.1 Acoustic Features
We extracted 88-dimensional eGeMAPS acoustic fea-
tures using the OpenSmile toolkit for every utterance.
This set of features was used extensively in charac-
terizing acoustic information that is relevant for emo-
tion recognition [43]. Specifically, it contained frequency-
related parameters—pitch, jitter, and shimmer—energy-
related parameters—the loudness and harmonics-to-noise
ratio (HNR)—and spectral parameters—alpha ratio, spectral
slope, MFCC, and spectral flux. Z-normalized was also used
in each corpus feature set to eliminate the value gap between
corpora.
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4.2 Enhanced Acoustic Latent Representation

Our complete framework derives enhanced acoustic latent
representation, as shown in Fig. 1. The proposed structure
involves two phases: The emotion-pooling phase and the
enhanced-learning phase.

In the emotion-pooling phase, two types of data were
involved: in-context data Xi and out-of-context data Xo. It
pools all the available emotion data to learn a common
speech representation space using AAE and derives mul-
tiple emotion perspectives for each in-context speech sample
by leveraging out-of-context data.

In the enhanced-learning phase, only in-context data Xi

is involved. An AAE is built by fine-tuning the encoder layer
simultaneously to integrate multiple perspectives to obtain
the final enhanced latent acoustic representation encoder.
The following are the details of two phases:

1) Emotion-pooling phase: We first learn a joint AAE to
map all available emotional speech data onto a common
space to robustly derive multiple emotion perspective
from out-of-context data Xo to in-context data Xi. Specif-
ically, as depicted in Fig. 1, we pool together all the
out-of-context data and in-context data to train a single
AAE [44]. Eep denotes the encoder, Fep represents
the decoder, Zep is a Gaussian distribution in which
p(z) = N(z|0, I), and Dep denotes the discrimina-
tor. This process encodes these speech corpora into a
common latent vector space, denoted as Pi and Po,
corresponding to database type. We then identify K-
nearest samples (PK

o ) of the out-of-context dataset for
every j-th sample in Pi (P j

i ) by computing cosine
similarity between P j

i to all samples in Po. Each of the
k-th identified P k

o has an associated emotion annotation
Y k
io in the out-of-context dataset. The derived labels Y jk

io

are multi-perspective information based on P j
i and Xj

i .
2) Enhanced-learning phase: We employ the proposed

structure for each in-context corpus to learn an encoder-
decoder network to derive the proposed enhanced
acoustic latent representation and to integrate the out-
of-context databases with multiple emotion perspec-
tives, i.e., jointly learning the emotion label derived
from out-of-context data as additional auxiliary label
for the in-context sample [7], [8]. The trained en-
coder/generator is denoted as G : Xi → C, which
maps Xi onto C and the decoder portion is denoted
as F : C → X ′i ; C is the learned latent acoustic
representation, D denotes the discriminator, M is a
recognition layer that is used in tuning G to integrate
out-of-context emotion information (see Fig. 1).
First, the in-context emotional acoustic code vector can
be learned using the following modified reconstruction
loss:

Lrec(G,F ) = argmin
G,F
‖X ′i −Xi‖2 (1)

where X ′ = F (G(Xi)) represents the reconstructed
features. The latent vector was further constrained by a
Gaussian distribution, Z , where p(z) = N(z|0, I). The
adversarial loss is defined as follows :

Ladv(G,D,Xi, Z) = min
G

max
D

Ez∼pz
[log(D(z))]

+Ex∼pdata(Xi)[log(1−D(G(Xi)))]
(2)

Then with this derived labels Y K
io coming from the

emotion-pooling phase, we modify the architecture to
integrate this auxiliary out-of-context emotional infor-
mation for every j-th sample for in-context database as
an additional loss:

Lper(Xi, G,M,Yio) =

argmin
G,M
‖M(G(Xi))− Y K

io ‖2
(3)

The complete objective function includes three different
loss defined as below:

Ltotal(G,F,D,M) = Lrec + Lper + Ladv (4)

4.3 Emotion Classifier
The discriminability of the proposed features is further val-
idated in the SER task by training a final emotion classifier
using vanilla DNN. We take G : X → C to derive the latent
representation from being used as input to a DNN for three-
classes emotion classifier.

5 EXPERIMENTAL SETUP

All of the experimental results are reported using un-
weighted average recall (UAR). We followed a strict cross-
validation setting (leave one dyad out for Creative IT and
RECOLA database and leave one person out for VAM
database), where the learning of the enhanced acoustic
latent vectors was performed only in training set for the en-
tire pipeline. This work involves three in-context data—the
Creative IT, the VAM, and the RECOLA—and three out-
of-context databases—the IEMOCAP, the NNIME, and the
MSP-Improv. All models were trained ten times with ran-
dom initialization and the average accuracy is reported.

The number of epochs, batch size, and learning rate
was 100, 64, and 0.005, respectively. Adam was used as an
optimizer to minimize the objective function.6

In experiment 1, we investigate the accuracy achieved
using two different number of dimensions for enhanced
acoustic latent representation for the labeled in-context
databases. We treat the compared domain adaptation meth-
ods as feature-based extraction approach (denoted as 2-
stage, S.2) as a feature extractor to train an emotion classifier
for a fair comparison to the transfer learning methods.

In experiment 2, we compared the performance between
the proposed method and the original domain adaptation
method. Therefore, domain adaptation methods followed
the original methods to obtain the prediction as an end-
to-end approach (denoted as 1-stage, S.1). Additionally, our
proposed method is turned as an end-to-end approach(S.1)
to be compared with the original one(S.2).

There are four sub-network structures—encoder, de-
coder, discriminator, and multiple perspective classi-
fier—within the architecture of the proposed methods
(prop.). The encoder is a DNN architecture consisting of
two fully connected layers with 128 and 256 hidden units
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followed by a layer with a C hidden unit to produce the
latent vector. The decoder consists of two fully connected
layers with 256 and 128 hidden units followed by a layer
with 88 hidden units to reconstruct the original feature.
Furthermore, we used batch normalization, drop out layer
with a dropout rate of 0.2, and ReLU as activation function
in each fully connected layer in encoder and decoder. Dis-
criminator consists of two fully connected layers with 64
and 32 hidden units, and ReLU as activation function fol-
lowed by a layer with two hidden units and a softmax layer.
Multiple perspective classifier is 3-layer DNN architecture
with [size(C), 64, 32, size(K)]. Activation function between
layers are leaky ReLU with parameter 0.2.

In conclude, encoded original feature (Xi) from encoder
are connected to (a.)discriminator to recognize samples
from latent vector or Gaussian distribution, to (b.)decoder
to decode the code vector(C) to the original feature size(88)
and to (c.)multiple perspective layer to predict multiple
perspective emotion label (K) (in this case 10 annotations).

After that, in the S.2 condition, we consider the encoder
as a feature extractor to extract the latent vector and train
NN, containing 1-layers with 10 hidden units, and ReLU as
activation function followed by a classification layer and a
softmax layer.

Additionally, in the S.1 condition, a classifier is added to
the network. It consists of two fully connected layers with
128 and 64 hidden units and ReLU as activation function
followed by a classification layer with a softmax layer.

We also implement the following baseline models in
deriving the latent acoustic representation:

1) Domain adaptation methods:
a) Adversarial Discriminative Domain Generalization:

We compared our results with adversarial discrim-
inative domain generalization (addog), which is a
state-of-the-art domain adaptation method in adver-
sarial training [10]. It combines encoder, classifier,
and critic that measures the distance from source
and target. The encoder is similar to that of (prop.).
The classifier consisted of two fully connected layers
with 128 and 64 hidden units and ReLU as activa-
tion function followed by a classification layer and
a softmax layer. The critic also consisted of a fully
connected layer with 64 hidden units and ReLU as
activation function followed by a fully connected
layer to estimate the earth mover’s distance. The
classifier would predict the result in S.1 condition.
Moreover, the latent vector C was taken for training
a NN, in S.2 condition, to compare with our proposed
method in experiment 1.

b) Domain Adversarial Neural Network:
dann proposed by Abdelwahab et al. is an unsuper-
vised domain adaptation method with adversarial
training that we take to compared with our results
[32]. Domain adversarial neural network (dann) pro-
posed by Abdelwahab et al. is an unsupervised do-
main adaptation method with adversarial training.
We used to compare it with our results [32]. We con-
ducted three parts of (dann): encoder, classifier, and
domain classifier. The encoder and classifier were
similar to that of (addog) for a fair comparison. The

domain classifier consisted of one fully connected
layer followed by a classification with a log softmax
layer. In S.1 condition, the classifier predicted the
result. In S.2 condition, we considered the encoder
as a feature extractor to extract the latent vector and
train a NN in experiment 1.

2) Representation learning method:
a) Pre-trained Neural Network:

A pre-trained neural network (pre.) indicates pre-
training with out-of-context and taking out the en-
coder to extract the representation for in-context data
to train a classifier. The pre-train neural network was
divided into an encoder and classifier. The encoder
and classifier were similar to those of (addog) for
a fair comparison. In S.1 condition, the classifier
predicted the result. After that, we considered the
encoder as a feature extractor to extract the latent
vector and train a NN, denoted as S.2 condition.

b) Semi-Supervised Adversarial Autoencoding:
We also compared the proposed method with semi-
supervised adversarial autoencoding (sAA) [25], [40],
which is a state-of-the-art framework for SER. It is
conducted four four parts: encoder, decoder, discrim-
inator, and classifier. The encoder, decoder, and dis-
criminator had similar architecture to our proposed
method for a fair comparison. The classifier was
similar to that of (addog).

c) Semi-Supervised Autoencoder:
Semi-supervised autoencoder (sAE) indicates the
same framework as in [38]. In this work, out-of-
context data is passed through a supervised classifier
and decoder, and in-context data is passed through
the only decoder during the training. After that, in-
context data passed through the final classifier to ob-
tain the final prediction during testing. It was divided
into an encoder, decoder, and classifier. The encoder,
decoder, and classifier had similar architectures to
our proposed method.

We note that annotations from out-of-context were en-
coded as same as those from in-context in addog, dann, and
pre. because it is needed to encode source’s annotation to
be as same as target’s for end-to-end approaches. On the
contrary, our proposed method aims to integrated out-of-
context information to help train in-context databases with-
out further adjusting annotations.

The ablation work is shown in experiment 3. All the
settings of encoder, decoder, discriminator were as same
as prop.. Therefore, we compared our framework with
the following ablation models to derive the latent acoustic
representation:

1) Autoencoder:
We built an vanilla autoencoder (AE) without a dis-
criminator and a multiple perspective classifier as a
ablation to our proposed network.

2) Adversarial Autoencoder:
We built an adversarial autoencoder(AAE) for each
target corpus and use the latent layer as input to the
NN.

3) Multiple Perspective Autoencoder:
Multiple perspective autoencoder(MPAE) is used, i.e.,
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TABLE 1: Summary of comparison between our proposed adversarially-enriched acoustic vector and state-of-the-art for emotion
classification.( UAR%) Noted: 64, 10: 64 or 10 dimensional latent vector. A. : activation and V. : valence.

In-Context: CIT
out-of-context: IEMOCAP out-of-context: NNIME out-of-context: MSP

sAE sAA dann addog prop. sAE sAA dann addog prop. sAE sAA dann addog prop.
64 A. 42.3 46.7 45.8 48.3 53.2 42.7 45.6 46.1 48 53.1 42.5 45.8 48.2 48.1 53.8
64 V. 36.9 38.2 37 37.2 40.6 36.9 38.1 36.1 36.1 40.7 37.1 38.7 36.9 36.9 41.7
10 A. 45.3 47.6 44.8 48.2 54.8 43.9 48.5 45.6 47.8 55.2 44.6 48.4 48 47.9 53.1
10 V. 37.3 37.6 35.7 35.6 39.8 36.5 37.2 34.9 35.5 39.2 36.7 37.1 37 37.8 39.5

In-Context: VAM
out-of-context: IEMOCAP out-of-context: NNIME out-of-context: MSP

sAE sAA dann addog prop. sAE sAA dann addog prop. sAE sAA dann addog prop.
64 A. 61.7 64.2 64 65.4 68.8 62.1 63.7 63.8 63.9 70 62.2 63.7 64.8 65.7 69
64 V. 43.4 43 42.2 45 45.4 41.4 42.3 37.5 39.4 46.2 42.4 42.6 44.6 43.9 47
10 A. 60.2 65.5 60.9 62.9 68.6 62.3 67 58.1 59.8 68.4 61.5 65 62.6 64 70.1
10 V. 43.3 42.5 43.8 43 46.7 42.1 43.9 39.4 39.6 43 42.7 43.1 44 43.8 46.8

In-Context: RECOLA
out-of-context: IEMOCAP out-of-context: NNIME out-of-context: MSP

sAE sAA dann addog prop. sAE sAA dann addog prop. sAE sAA dann addog prop.
64 A. 57.3 59.1 58.6 57.7 62 58 58.6 59.2 59 62.4 57.8 58.8 58 60.9 62.2
64 V. 48.1 49.1 50.2 52.1 55.8 49.1 49 50.9 50.7 53.6 48.1 48.3 51.5 51.9 55.2
10 A. 59.2 61.6 57.7 58.6 62.7 59.1 61.1 57.4 57.3 62.5 59.9 61.2 57.9 60.1 63.2
10 V. 51.1 52 50.5 50.8 56.3 49.9 50.5 51 50.9 54.7 49.5 50.8 51 52.7 57.2

without a discriminator as a ablation to our proposed
network. There are two sub-networks of MPAE: The
out-of-context multiple perspective classifier and the in-
context autoencoder.

4) Adversarial Multiple Perspective Encoder:
Adversarial multiple perspective encoder(AMPE) is
used, i.e., without the decoder as a ablation to our
proposed network.

In experiment 4, the proposed framework uses multi-
ple emotion perspectives derived using the ‘closest’ out-of-
context sample’s emotion rating. We additionally conducted
experiments to investigate whether different manners of
choosing the derived labels would have an effect on the
in-context emotion classification accuracy. Specifically, we
evaluated the following two methods in deriving multiple
emotion perspectives:

1) Inverse:
When deriving the multiple perspectives for the in-
context samples, we considered the emotion labels of
those out-of-context samples that were furthest away as
the derived emotion labels. We term this method as an
Inverse perspective.

2) Random:
We picked random emotion labels as the derived label
to be used as the multiple emotion perspectives.

Furthermore, we employed the t-SNE algorithm in ex-
periment 5 to visualize the latent representation from the
proposed method and its comparisons.

Lastly, we conducted an investigation on the effect of re-
duced in-context labeled samples in experiment 6 to observe
the tendency.

6 EXPERIMENTAL RESULTS AND ANALYSIS

6.1 Comparison with State-of-the-art

We compared our result with the newly adversarial re-
search, semi-supervised adversarial autoencoding frame-
work [40], the domain adaption method, dann (S.2) [32],
and addog (S.2) [10].

Table 1 shows the result of our proposed method and
comparisons in two emotion annotation (activation and
valence) when using 64-dimensional and 10-dimensional
code vector paired with every out-of-context database. By ex-
amining results obtained using 64-dimensional vector, with
the data of out-of-context, IEMOCAP, we obtain 53.2%, 68.8%,
62% in the activation in three in-context database, i.e., the
CIT, the VAM, and the RECOLA respectively, as compared
to 42.3%, 61.7% and 57.3 % obtained using sAE, which all
increases around 11%, 7.1%, 4.7%. A similar trend is also
observed in the valence dimension. Specifically, we achieved
40.6%, 45.4%, and 55.8% across the three in-context databases
than achieving 36.9%, 43.4%, and 48.1% using sAE with an
approximate increment of 3.7%, 2%, and 7.7%. It is similar
when using other out-of-context database, NNIME and MSP.
After that, we compare the proposed methods to sAA,
which includes a classifier in its framework and utilizes
out-of-context data to update the model unsupervised. We
observe by examining results obtained using 64 dimensions
that the proposed method surpasses sAA for the activa-
tion and valence. We obtained 53.1%, 70%, and 62.4% in
the activation with out-of-context data, NNIME, than 45.6%,
63.7%, and 59.2% obtained using sAA in three in-context
databases—the CIT, the VAM, and the RECOLA. Moreover,
40.7%, 46.2%, and 53.6% using the proposed method sur-
passes 38.1%, 42.3%, and 49% obtained using sAA in the
valence. Additionally, We attempt to compare our proposed
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method with domain adaptation methods (dann and addog)
in similar conditions, that is, taking their encoder to extract
features for the in-context database and train a classifier (S.2).
We investigated results obtained using 64 dimensions, e.g.,
with out-of-context data, MSP, our proposed model are better
than dann and addog,(53.8% versus 48.2% versus 48.1%),
(69% versus 64.8% versus 65.7%), (62.2% versus 58% versus
60.9%) in activation, as well as (41.7% versus 36.9% versus
36.9%), (47% versus 44.6% versus 43.9%), (51.5% versus
51.9% versus 55.2%) in valence in three in-context database,
i.e., the CIT, the VAM, and the RECOLA respectively.

Moreover, we note few interesting points besides the
comparison between the proposed method and state-of-
the-arts. First, we find that performance with out-of-context,
NNIME, may be lower than with other out-of-context data
from the observation in the performance of two annotations
using sAA, dann, addog in three in-context databases. Simi-
lar circumstances are shown in Table 2. It may be due to the
fact that these in-context data are closer to IEMOCAP and
MSP than to NNIME. sAA trained straightforwardly using
out-of-context without annotation would cause the model to
include unwanted variability of out-of-context, leading to a
similar situation with dann and addog. On the contrary,
prop. integrated the out-of-context information only for those
data that were similar to the in-context database instead of
interference from the variability of out-of-context. Second,
domain adaptation methods, such as dann and addog, force
the same annotation setting between source and target,
i.e., source and target annotations should have the same
label space. It would then require dividing the annotation
manually if the setting is different from source and target
data. However, the proposed method directly uses the orig-
inal annotation from the out-of-context to derive multiple
perspective information.

Further, we report the accuracy obtained using only a
10-dimensional acoustic latent vector to evaluate the ro-
bustness of the framework. Fewer dimensions of the vector
may lead to low usage of memory when applied in the real
world. We obtained 54.8%, 68.6%, and 62.7% accuracy with
the data of out-of-context, CIT, in the activation dimension
than 45.3%, 60.2%, and 59.2% in the sAE, CIT, VAM, and
the RECOLA database. For valence, we obtained 39.8%,
46.7%, and 56.3% as compared to 37.3%, 43.3%, and 51.1%
in the sAE. Additionally, latent code constrained by Gaus-
sian distribution may keep its discriminability in the low
dimensional condition. However, the latent vectors from DA
methods were constrained into a common space between
source and target, which do not explicitly improve emotion
discriminability in the latent. Hence, we find that the AAE-
based architecture like sAA and prop.. would decrease the
accuracy only slightly or even improve the accuracy when
using low-dimensional features. On the other hand, DA-
based architecture such as dann and addog would decrease
the accuracy mostly in activation.

6.2 Comparison with Domain Adaptation Method
Domain adaptation(DA) on SER have been proposed recent
years. The purpose of DA on SER is similar to our frame-
work, i.e., to utilize the information from another corpus
(out-of-context database) to build an emotion classifier to be
used directly in the target corpus (in-context database).

Specifically, Table 2 shows the results of comparing
our proposed method with a series of domain adaptation
methods. In this table, our proposed method prop. in S.2
implies that the latent code was trained on the enhanced-
learning phase, and a DNN emotion classifier was then
trained by these latent codes. However, prop. in S.1 was
directly trained and predicted with the in-context database
by adding a classifier in the enhanced-learning phase to
perform prediction. Meanwhile, pre., dann and addog were
trained with out-of-context database and directly predicted
the in-context database. There are several points to discuss.

TABLE 2: Comparison between our proposed method us-
ing 64-dimensional latent vector and domain adaptation meth-
ods.(UAR%) Noted: S.1: end-to-end approach network getting a
prediction with a emotion classifier inside the network. S.2: feature
based extraction approach serving as a feature extractor to train a
additional emotion classifier.

CIT VAM RECOLA
64 Dim. Act. Val. Act. Val. Act. Val.

out-of-context: IEMOCAP
S.1 dann 38.2 39.4 42.3 37.9 56.8 49.2

addog 40.2 40.1 46.4 40.8 58.5 49.9
pre. 37.5 39.5 39.9 38.5 56.2 51

prop. 51.8 39 63.6 45.6 60.7 51.7
S.2 pre. 47.9 35.4 66.1 44.7 57.8 50.8

prop. 53.2 40.6 68.8 45.4 62 55.8
out-of-context: NNIME

S.1 dann 37 35.1 38.9 38.9 47.7 48.8
addog 36.8 36.5 39.5 35.7 48.9 49.4
pre. 37.9 34.9 39.9 36.5 48.1 48.2

prop. 52.2 39.4 64.7 46.1 61.1 52.1
S.2 pre. 46.8 36.8 65.5 38.3 58 52.5

prop. 53.1 40.7 70 46.2 62.4 53.6
out-of-context: MSP

S.1 dann 43.7 36.2 50.8 38.4 49.7 47.4
addog 43.9 37.9 49.9 39.7 47.8 48.6
pre. 43.4 35.7 49.9 40.4 48.4 47.3

prop. 52.3 39.7 64.1 44.8 61.3 51.1
S.2 pre. 47.5 37.4 65.8 46.2 58.7 51.3

prop. 53.8 41.7 69 47 62.2 55.2

First, we compare the DA methods with our proposed
methods. In the activation, it is obvious that the perfor-
mance of prop. in S.2 outweighs that of DA a lot, i.e.,
the result from out-of-context, IEMOCAP, 53.2% of prop.
compared to 37.5%, 38.2%, 40.2% in pre., dann and addog
in the CIT, 68.8% of prop. compared to 39.9%, 42.3%, 46.4%
in the VAM, 62% of prop. compared to 56.2%, 56.8%, 58.5%
in the RECOLA. It has a similar trend on the different out-
of-context databases—NNIME and MSP. Moreover, in the
the performance of valence , it increased to approximately
4.2% from addog to prop.. in the CIT database, 5.8% from
pre. to prop. from out-of-context, NNIME. It may be due to
the difficulty in recognizing valence from speech, leading
to low performance in most of the methods. Additionally,
we note that the effect of domain adaptation on valence is
usually better than that on activation [10], [32]. However,
training deep models on the RECOLA database is much
more challenging than other databases. The label distri-
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TABLE 3: Ablation comparison of our proposed adversarially-enriched acoustic vector for emotion classification using 64-dimensional
and 10-dimensional latent vector and domain adaptation methods in activation and valence.(UAR%)

In-Context: CIT
out-of-context: IEMOCAP out-of-context: NNIME out-of-context: MSP

AE AAE MPAE AMPE prop. MPAE AMPE prop. MPAE AMPE prop.
Act. 64 Dim. 48.3 51.3 51.4 47.7 53.2 51.3 50.1 53.1 50.9 47.8 53.8

10 Dim. 47.7 51.7 52.3 49.9 54.8 53.1 49.6 55.2 51.2 49.3 53.1
Val. 64 Dim. 37.1 37.8 37.3 37.1 40.6 37.6 37.3 40.7 37.3 35.4 41.7

10 Dim. 37 37.1 38.3 36.1 39.8 37.8 36.5 39.2 36.4 35.5 39.5

In-Context: VAM
out-of-context: IEMOCAP out-of-context: NNIME out-of-context: MSP

AE AAE MPAE AMPE prop. MPAE AMPE prop. MPAE AMPE prop.
Act. 64 Dim. 63.3 67.5 66.7 60.9 68.8 67.5 66.9 70 67.2 59.9 69

10 Dim. 62.4 68.1 67.2 66.1 68.6 67.7 66.5 68.4 67.9 65.9 70.1
Val. 64 Dim. 41.1 42.4 41.3 36.1 45.4 42.5 38.8 46.2 41.5 35.2 47

10 Dim. 42.1 43.1 43.8 38.3 46.7 43.4 42.2 43 43.4 38.7 46.8

In-Context: RECOLA
out-of-context: IEMOCAP out-of-context: NNIME out-of-context: MSP

AE AAE MPAE AMPE prop. MPAE AMPE prop. MPAE AMPE prop.
Act. 64 Dim. 60.5 60.6 58.7 58.1 62 60.5 59.8 62.4 60.2 57.8 62.2

10 Dim. 60.4 60.8 60.6 60.1 62.7 61.1 60.6 62.5 61.1 59.7 63.2
Val. 64 Dim. 51 52 51.9 50.5 55.8 51.6 52.6 53.6 51.7 50.8 55.2

10 Dim. 51.5 52.3 54 52.5 56.3 53.8 52.6 54.7 53.2 53.3 57.2

bution is highly imbalanced, and the sample number is
small. Therefore, performing SER in the RECOLA database
is still difficult when the domain adaption method is used,
with many results in using DA are lower than the random
guessing. Overall, a transfer from a labeled speech corpus to
each particular context underestimates the true variability of
the distribution of limited data. In this case, the latent code
integrating the annotation information from the source may
be a better solution to deal with limited speech corpus in a
particular context.

Second, we investigated the difference between S.1 and
S.2, whether an emotion classifier is trained separately or
jointly. The performance in S.2 is significantly better than
in S.1 in activation for the pre. model in S.1 and S.2.
The reason is that the network is trained for the out-of-
context data, where the distribution is different from in-
context data. For valence, the tendency is similar except
when the IEMOCAP as the out-of-context data is used. We
then compared our proposed method (in S.2) with prop. in
S.1. For the activation, the performance of S.2 surpassed that
of S.1 in all the situations, increasing more than 5% in the
VAM database (68.8% versus 63.6%, 70% versus 64.7%, and
69% versus vs 64.1% from out-of-context, IEMOCAP, NNIME
and MSP ). For valence, the disparity between them are
is not so significantly notable, i.e., it is around 1% to 3%
from prop. of S.2 to that of S.1. Overall, we find that the
prop. of S.2 are better than proposed research, including an
emotion classifier (S.1), especially for activation. The latent
code produced by the proposed approach may have further
discriminability in training a simple deep neural network.
However, a framework including an emotion classifier (S.1)
may confuse the encoder while attempting to update the
loss from the classifier, discriminator, and multiple perspec-
tive layer simultaneously. Moreover, both prop. perform

Fig. 2: The total average accuracy of each out-of-context
databases of each label, which averages all the UARs ob-
tained for each in-context data(CIT, VAM, RECOLA) of two
different emotion attributes(activation(a-) and valence(v-))
for different models.

better than domain adaptation methods, which shows the
effect of our framework in dealing with databases with a
limited amount of labeled data.

6.3 Ablation Comparison

Table 3 shows the result of the ablations compared to
our proposed method using a 64-dimensional and 10-
dimensional code vector. Furthermore, each in-context cor-
pus was paired with every out-of-context database; the re-
sults are shown in Table 3. There are two observations. First,
the performance of the proposed method for the activa-
tion is better than other ablations, AE, AAE, MPAE and
AMPE by either using a 64-dimensional or 10-dimensional

Authorized licensed use limited to: National Tsing Hua Univ.. Downloaded on January 07,2022 at 01:34:18 UTC from IEEE Xplore.  Restrictions apply. 



1949-3045 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAFFC.2021.3126145, IEEE
Transactions on Affective Computing

10

Fig. 3: The comparison of using (b)inverse and (c)random versus the proposed method ((a)prop.) in deriving multiple
emotion perspective for (1) activation of the CIT corpus and (2) valence of the VAM corpus as the in-context data with
the IEMOCAP as the out-of-context data. random indicates that each in-context sample produces 10 random derived ratings
that imitate the annotation characteristic from each out-of-context data to be used as its derived labels. inverse indicates the
same multiple perspective computation except using the labels of those samples that is furthest away from each in-context
sample. The x-axis shows the derived labels plotted distributionally on the scale of 1 to 4.5. The y-axis represents the
average count of selected out-of-context emotion annotation scale. The different bar indicates the average count of the in-
context labels(‘0’, ‘1’ and ‘2’ or low, mid, and high) derived or chosen for that level of out-of-context emotion scale ranging
from 1-4.5. These histogram shows the proposition of 10 derived different perspective for specific in-context classes and its
composition.

vector in the CIT, VAM, and RECOLA database, respec-
tively. We find that fewer latent codes can be extracted
to maintain the performance within the small database,
which is helpful for the limited computing resource. For the
valence, a similar trend is observed using a 64-dimensional
vector besides a minor drop in the VAM database when
using a 10-dimensional vector (43% versus 43.4%). Second,
there is an obvious drop with AMPE in every condition.
AMPE is proposed without a decoder or reconstruction
layer, which may cause the latent code to lose its original
representation power over the in-context data. Third, the
performance between AAE and MPAE is approximately
the same and better than AE in the three databases. Nev-
ertheless, prop. surpasses both of them owing to combining
the discriminator and multiple perspective classifier, which
may imply that discriminator help latent code to be more
stable to avoid the overreaction from multiple perspective
classifier and vice versa. Hence, this may cause AAE or
MPAE to be lower than the proposed method.

Fig. 2 shows the results, which average all the UARs
obtained for each in-context of two different emotion at-
tributes for different models. Results show that our adver-
sarial learning strategy requires all components to be jointly
considered in enhancing the affective information of the in-
context latent. It is evident from the better performance prop.
obtained than those of ablations.

TABLE 4: Comparison of different manners in deriving multiple
emotion perspectives using 64-dimensional latent vector. random
indicates producing K random derived ratings for each in-context
sample. inverse indicates using labels of K furthest samples from
each in-context sample. K is 10 here.

CIT VAM RECOLA
64 Dim. Act Val Act Val Act Val

AAE 51.3 37.8 67.5 42.4 60.6 52
inverse

IEMOCAP 52.2 36.8 66.8 38.6 59.2 52.8
NNIME 51.4 37.2 68 39.9 60.4 52.6

MSP 52.6 37.2 66.8 41.1 60.3 52.6
random

IEMOCAP 50.7 36.9 66.8 40.6 60.2 50.8
NNIME 50.7 37.7 65.6 41.1 60.3 50.6

MSP 50.5 37.8 65.9 40.2 60.2 49.7
prop.

IEMOCAP 53.2 40.6 68.8 45.4 62 55.8
NNIME 53.1 40.7 70 46.2 62.4 53.6

MSP 53.8 41.7 69 47 62.2 55.2

6.4 Different Manners of Multiple Emotion Perspectives

Table 4 shows the results that compare the different manners
in deriving multiple emotion perspectives using 64 dimen-
sional latent vector. AAE indicates proposed model without
any multiple emotion perspectives. random indicates that
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Fig. 4: Visualization of the latent representation by the t-SNE algorithm of our proposed method, addog, dann, pre., AAE
and eGeMAPS feature in activation with in-context database—the VAM corpus using 10-dimensional latent representation.
It is marked in three classes—low (0), mid (1), and high (2)—with a distinct color.

we produce K random derived ratings for each in-context
sample, imitating the annotation characteristic from each
out-of-context data to be used as its derived labels. inverse
indicates the same multiple perspective computation except
using K labels of those furthest samples from each in-context
sample. K is 10 here.

There are several points to note. First, we compared
random with AAE. The model is clearly misled by the ran-
domly given wrong information. The UARs of random were
lower than AAE for activation. The result from out-of-context
database, IEMOCAP, was 50.7%, 66.8%, and 60.2% than
51.3%, 67.5%, and 60.6% in the CIT, VAM, and RECOLA,
respectively. There is a similar tendency for valence. The
UARs from random are worse than AAE, i.e., the result from
out-of-context database, IEMOCAP, was 36.9%, 40.6%, and
50.8% than 37.8%, 42.4%, 52%, respectively.

Second, we observe that inverse emotion perspectives
may provide distinct information to the model. We notice
while examining the inverse condition that most of the
results perform better than the random, and few of the results
perform better than AAE. For example, the result on the CIT
database—IEMOCAP, NNIME, and MSP was 52.2%, 51.4%,
and 52.6% compared to 51.3%. However, the inverse method
of integrating out-of-context data is not as effective as the
proposed method. All of these results are worse than the
proposed method. For instance, we have achieved the best
UAR on prop., 53.8%, 70%, and 62.4% in activation as well
as 41.7%, 47%, and 55.8% in valence than the performance
of other manners.

Moreover, to see the behavior of the selection or deriva-
tion of multiple perspective from different manners; we
analyze the count of multiple perspective for each in-context
emotion class lying within out-of-context emotion scale for
different mentioned manners. Results of this analysis are
shown in Fig. 3, where the x-axis shows the out-of-context
label scale, y-axis represents the average count of selected
in-context emotion classes and the different bar indicates the

average count of the in-context labels(‘0’,‘1’ and ‘2’) derived
or chosen for that level of out-of-context emotion scale rang-
ing from 1-4.5. These histogram shows the proposition of 10
derived different perspective for specific in-context classes
and its composition. As we are choosing K or 10 perspec-
tive; the count of derived perspective for each respective
class are summed to 10. For example, class ‘0’ of in-context
CIT database (red bar) derives multiple perspectives; more
from out-of-context label 3.0 and less from label 1.5 and 4.5
and so on; all of them are summed to 10 in (1)-(a).

Fig. 3 (top) shows the difference between inverse, random
and our proposed method for activation attribute using the
CIT as the in-context data and the IEMOCAP as the out-of-
context data. From (1)-(a), the prop. annotations were chosen
from the IEMOCAP appear to be a Gaussian-like distribu-
tion. The samples in the CIT with labels ‘0’, ‘1’ and ‘2’ prefer
to choose 3; however, the samples in the CIT with the label
of ‘0’ (low activation) prefer low values, and the samples
in the CIT with the label of ‘2’ (high activation) prefer high
values if looking into histograms of each position respec-
tively. In (1)-(b), the inverse annotations were chosen from
the IEMOCAP as the derived labels appear to be a little more
polarized. The sample of ‘0’ prefer to choose 3.5. Moreover,
the sample of ‘1’ and ‘2’ all choosing 2.5 simultaneously
may confuse the model to have a worse performance on
prediction. It potentially leads to integrating a more diverse
variability for the CIT acoustic representation (i.e., maybe
missing originally), benefiting the activation recognition
performances. On the contrary, most of the derived labels
seem to be located evenly in (1)-(c) in the Random setting.
This regularity may be detrimental (or simply useless) in
affecting the recognition performances.

Fig. 3 (bottom) shows the difference between inverse,
random, and our proposed method for valence attribute
when using the VAM as the in-context data and the IEMO-
CAP as the out-of-context data. There are two observations.
First, in (2)-(a), label ‘0’ (low valence) prefer to choose the
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Fig. 5: Tendency of reducing sample from in-context data when using our proposed method, AAE, and eGeMAPS. (a),
(b), (c) indicate training and testing with the CIT, the VAM, and the RECOLA corpus, respectively. (1) and (2) indicate the
annotation, activation, and valence. Additionally, our proposed method is represented with a solid line, and different color
indicates various out-of-context data. The methods used for the comparison are represented with a dotted line.

annotation 2 as its multiple emotion perspectives from the
IEMOCAP. Samples in the VAM with the label of ‘2’ (high
valence) prefer to choose the annotation 2.5 from the IEMO-
CAP. We believe that this additional common affect-related
variability that is being integrated into the acoustic latent
representation would help improve the overall recognition
performance. Secondly, in (2)-(b), the sample of ‘0’ and
‘2’ choose a nearly similar number from a scale of 1.5 to
4, leading to a worse performance than the one without
multiple perspectives (38.6% (inverse) versus 42.4% (AAE),
see table 4).

6.5 Visualization of Learned Representation

The t-SNE algorithm was used to visualize the distribution
of in-context data to further assess the effect of our latent
representation from prop.. Fig. 4 illustrates the 2D projection
of the feature representation using the t-SNE algorithm to
compare prop. with aaddog, dann, pre., AAE and original
extracted feature, eGeMAPS. Colors indicate the low, mid,
and high of the annotation. The VAM corpus with activation
using a 10-dimensional latent vector is used for the visual-
ization.

We present some observations from the graphs. First, the
polar side of the annotation (low versus high) appears to be
separable in all the graphs. However, the position of mid
may play an important role in determining the quality of the
latent code. Specifically, the position of mid samples from
(f) covers high and low samples; moreover, all samples of
activation are sparse on the graph. A similar tendency can
be seen in (c) and (e). The sparsity of the mid sample of (e)
makes it challenging to identify samples between 0 and 2.
Mid sample of (c) is also sparse; however, the low and high
samples of (c) are concentrated and split with mid sample,
unlike (e). Second, the clustering effect of similar annotation
is important. (b) illustrates the latent vector visualization of
addog. Compared to (b), clustered samples are more evident

in (a); however, (b) has much more clustered samples of
low and high than (c), (e), and (f). Third, (a) illustrates the
latent vector visualization of prop. The green dots (high
activation) are accumulated on the bottom right, and the
blue dots (low activation) are clustered on the upper right
of the graph. However, the red dots (mid activation) are
spread on the left side of the graph. The primary difference
is that mid samples do not cover the samples of another
category significantly; moreover, they have clusters samples
that appear more discriminative and concentrated than the
graph of other methods.

6.6 Reducing in-context Labeled Data

We further conduct conducted experiments to assess the
limitation of our proposed framework. The core idea of
our method is to enhance the acoustic latent representa-
tion of a small-scale affective in-context database using an
out-of-context emotion database. An additional analysis is
performed to assess the recognition rates achieved while
reducing the number of in-context labeled samples to in-
vestigate the limitation of our framework under a severe
lack of labeled data situation. Specifically, we split the in-
context database into training and testing sets instead of
cross-validation, as mentioned above. We used 20% of the
data as the testing set, which belongs to different folds
from the training set, e.g., there were eight folds in the CIT
corpus, and two specific folds were selected as testing sets.
We evaluated our complete framework using a sample size
of the full set, 70%, 50%, 20%, and 10% of the training set
(full set implies the entire training set or 80% of total data).
Additionally, all the models were trained ten times with
random initialization and then averaged the performance.

Fig 5 shows the line chart of this experiment. There
are 6 slots on Fig 5. The CIT corpus(a), the VAM cor-
pus(b) and the RECOLA corpus(c)and two annotations,
activation(1) and valence(2) are compared with two baseline
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(eGeMAPS, AAE) with dotted line as well as three out-of-
context database with solid line.

The graph shows that there are two main situations
while performing this experiment. Most of the methods
suffer a loss of accuracy when decreasing the number of
available samples like (1)-(b) or (1)-(c). Moreover, the meth-
ods maintain the performance when decreasing the number
of available samples, such as (1)-(a) and the slots of (2).
This experiment demonstrates an important characteristic
of our framework, i.e., robustness against a lack of data
training conditions. For example, there is an obvious drop
in baseline valence accuracy in (2)-(a) of the CIT corpus
when eGeMAPS and AAE methods are used; however,
our proposed method maintains its performance close to
41% (From full set to 10%). A similar situation eGeMAPS
in (1)-(a). The proposed method and AAE maintain the
performance around 54%, while eGeMAPS maintain the
performance of around 45%. This effect is also observed in
(2)-(b) of the VAM corpus. After reducing a full set to 10%,
the accuracy of the eGeMAPS and AAE model drops from
approximately 36% to 34% and 32% in valence. However,
the proposed method maintains an accuracy comparable at
approximately 37% for valence from the full set to 10% of
data samples. For the activation, it is an obvious drop from
the full set to 10%; however, our proposed method surpasses
AAE and eGeMAPS in most conditions.

A similar trend was observed in (2)-(c) of the RECOLA
corpus. When reducing the sample size from full set to
10%, our method experiences a loss of accuracy because the
number of the sample decreases. However, it still maintains
a competitive recognition rate. Although there is a drop
on (1)-(c), the amplitude of the drop is approximately 3 to
4%. Moreover, our proposed methods win over AAE and
eGeMAPS in most conditions at the drop.

This experiment demonstrates that our proposed frame-
work is potentially beneficial for a wide range of rapid
adoption of SER technology across contexts where one does
not have to start with a large labeled corpus; Instead, a
workable recognition system could be readily achieved by
learning to enrich the acoustic latent representation with
existing available speech emotion corpora.

7 CONCLUSION AND FUTURE WORK

In this paper, we propose a novel framework in the ad-
versarially enhanced acoustic latent representation of the
small-scale affective corpus to improve the robustness of
the SER algorithm. We propose a new learning paradigm
unlike the conventional approach in treating the cross con-
texts robustness issue as an unsupervised transfer learning
problem because there is not a single database that is large
enough to cover the adequate variability in speech SER that
can be suitable for transfer learning, i.e., to integrate the
out-of-context database to aid the learning of small scale in-
context acoustic representation, to improve the SER accuracy.
This work evaluates the SER improvement when using our
proposed adversarial learning strategy in three in-context
databases with three out-of-context databases. We also pro-
vide an extensive analysis of the effect of various parameters
of this learning strategy on the accuracy obtained, specifi-
cally focusing on the manner of deriving multiple emotion

perspectives and the amount of in-context data samples.
Generally, we observe that the proposed method needs only
a few dimensions of a latent vector with a limited amount
of data, which is enough to achieve competitive recognition
accuracy. This result points toward potential benefit in ad-
vancing the rapid adoption of SER across contexts.

There are several future directions. First, the results in
Exp 6 show that an even lower number of samples can
achieve a stable recognition accuracy. This may indicate
that the manner selects which in-context samples are critical.
It means that picking those samples that are sufficient in
covering adequate affective vocal variability would be an
important step. A systematic method in picking the right
samples for the annotation would further reduce the num-
ber of samples needed in this learning paradigm. Second,
this work uses derived emotion labels from the out-of-context
database as auxiliary information to be integrated in the
learning of the enhanced representation. We would like
to investigate other key factors that are known to affect
and modulate the speech emotion characteristics, e.g., the
types of interactions, the language of the database, and
the personality of the subjects, as information to be inte-
grated into our framework. Finally, we continuously explore
other modalities that can be jointly learned together. With
the advancement of robust SER that can handle multiple
contextual settings rapidly, i.e., without the need in collect-
ing a large labeled corpus, we are hopeful in deploying
SER technology widely and potentially enhancing the user
experiences for these modern human-machine interfacing
systems.
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